Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
mBio ; 14(2): e0041623, 2023 04 25.
Article in English | MEDLINE | ID: covidwho-2278130

ABSTRACT

Recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant B.1.1.529 (Omicron) has rapidly become the dominant strain, with an unprecedented number of mutations within its spike gene. However, it remains unknown whether these variants have alterations in their entry efficiency, host tropism, and sensitivity to neutralizing antibodies and entry inhibitors. In this study, we found that Omicron spike has evolved to escape neutralization by three-dose inactivated-vaccine-elicited immunity but remains sensitive to an angiotensin-converting enzyme 2 (ACE2) decoy receptor. Moreover, Omicron spike could use human ACE2 with a slightly increased efficiency while gaining a significantly increased binding affinity for a mouse ACE2 ortholog, which exhibits limited binding with wild-type (WT) spike. Furthermore, Omicron could infect wild-type C57BL/6 mice and cause histopathological changes in the lungs. Collectively, our results reveal that evasion of neutralization by vaccine-elicited antibodies and enhanced human and mouse ACE2 receptor engagement may contribute to the expanded host range and rapid spread of the Omicron variant. IMPORTANCE The recently emerged SARS-CoV-2 Omicron variant with numerous mutations in the spike protein has rapidly become the dominant strain, thereby raising concerns about the effectiveness of vaccines. Here, we found that the Omicron variant exhibits a reduced sensitivity to serum neutralizing activity induced by a three-dose inactivated vaccine but remains sensitive to entry inhibitors or an ACE2-Ig decoy receptor. Compared with the ancestor strain isolated in early 2020, the spike protein of Omicron utilizes the human ACE2 receptor with enhanced efficiency while gaining the ability to utilize mouse ACE2 for cell entry. Moreover, Omicron could infect wild-type mice and cause pathological changes in the lungs. These results reveal that antibody evasion, enhanced human ACE2 utilization, and an expanded host range may contribute to its rapid spread.


Subject(s)
COVID-19 , Immune Evasion , Humans , Animals , Mice , Mice, Inbred C57BL , Angiotensin-Converting Enzyme 2/genetics , Host Specificity , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing , Antibodies, Viral
2.
NPJ Vaccines ; 7(1): 144, 2022 Nov 12.
Article in English | MEDLINE | ID: covidwho-2286285

ABSTRACT

Since the first outbreak in December 2019, SARS-CoV-2 has been constantly evolving and five variants have been classified as Variant of Concern (VOC) by the World Health Organization (WHO). These VOCs were found to enhance transmission and/or decrease neutralization capabilities of monoclonal antibodies and vaccine-induced antibodies. Here, we successfully designed and produced a recombinant COVID-19 vaccine in CHO cells at a high yield. The vaccine antigen contains four hot spot substitutions, K417N, E484K, N501Y and D614G, based on a prefusion-stabilized spike trimer of SARS-CoV-2 (S-6P) and formulated with an Alum/CpG 7909 dual adjuvant system. Results of immunogenicity studies showed that the variant vaccine elicited robust cross-neutralizing antibody responses against SARS-CoV-2 prototype (Wuhan) strain and all 5 VOCs. It further, stimulated a TH1 (T Helper type 1) cytokine profile and substantial CD4+ T cell responses in BALB/c mice and rhesus macaques were recorded. Protective efficacy of the vaccine candidate was evaluated in hamster and rhesus macaque models of SARS-CoV-2. In Golden Syrian hamsters challenged with Beta or Delta strains, the vaccine candidate reduced the viral loads in nasal turbinates and lung tissues, accompanied by significant weight gain and relieved inflammation in the lungs. In rhesus macaque challenged with prototype SARS-CoV-2, the vaccine candidate decreased viral shedding in throat, anal, blood swabs over time, reduced viral loads of bronchus and lung tissue, and effectively relieved the lung pathological inflammatory response. Together, our data demonstrated the broadly neutralizing activity and efficacy of the variant vaccine against both prototype and current VOCs of SARS-CoV-2, justifying further clinical development.

4.
Virol Sin ; 37(5): 695-703, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1915075

ABSTRACT

Several variants of concern (VOCs) have emerged since the WIV04 strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first isolated in January 2020. Due to mutations in the spike (S) protein, these VOCs have evolved to enhance viral infectivity and immune evasion. However, whether mutations of the other viral proteins lead to altered viral propagation and drug resistance remains obscure. The replicon is a noninfectious viral surrogate capable of recapitulating certain steps of the viral life cycle. Although several SARS-CoV-2 replicons have been developed, none of them were derived from emerging VOCs and could only recapitulate viral genome replication and subgenomic RNA (sgRNA) transcription. In this study, SARS-CoV-2 replicons derived from the WIV04 strain and two VOCs (the Beta and Delta variants) were prepared by removing the S gene from their genomes, while other structural genes remained untouched. These replicons not only recapitulate viral genome replication and sgRNA transcription but also support the assembly and release of viral-like particles, as manifested by electron microscopic assays. Thus, the S-deletion replicon could recapitulate virtually all the post-entry steps of the viral life cycle and provides a versatile tool for measuring viral intracellular propagation and screening novel antiviral drugs, including inhibitors of virion assembly and release. Through the quantification of replicon RNA released into the supernatant, we demonstrate that viral intracellular propagation and drug response to remdesivir have not yet substantially changed during the evolution of SARS-CoV-2 from the WIV04 strain to the Beta and Delta VOCs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Replicon , RNA , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Viral Proteins , Virion/genetics
5.
Virol Sin ; 37(4): 581-590, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1867891

ABSTRACT

SARS-CoV-2 infection is a global public health threat. Vaccines are considered amongst the most important tools to control the SARS-CoV-2 pandemic. As expected, deaths from SARS-CoV-2 infection have dropped dramatically with widespread vaccination. However, there are concerns over the duration of vaccine-induced protection, as well as their effectiveness against emerging variants of concern. Here, we constructed a recombinant chimpanzee adenovirus vectored vaccine expressing the full-length spike of SARS-CoV-2 (AdC68-S). Rapid and high levels of humoral and cellular immune responses were observed after immunization of C57BL/6J mice with one or two doses of AdC68-S. Notably, neutralizing antibodies were observed up to at least six months after vaccination, without substantial decline. Single or double doses AdC68-S immunization resulted in lower viral loads in lungs of mice against SARS-CoV-2 challenge both in the short term (21 days) and long-term (6 months). Histopathological examination of AdC68-S immunized mice lungs showed mild histological abnormalities after SARS-CoV-2 infection. Taken together, this study demonstrates the efficacy and durability of the AdC68-S vaccine and constitutes a promising candidate for clinical evaluation.


Subject(s)
COVID-19 , Viral Vaccines , Adenoviridae/genetics , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Mice , Mice, Inbred C57BL , Pan troglodytes , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, Synthetic
7.
Cell Discov ; 7(1): 82, 2021 Sep 07.
Article in English | MEDLINE | ID: covidwho-1397862

ABSTRACT

The pandemic of COVID-19 caused by SARS-CoV-2 has raised a new challenges to the scientific and industrious fields after over 1-year spread across different countries. The ultimate approach to end the pandemic is the timely application of vaccines to achieve herd immunity. Here, a novel SARS-CoV-2 receptor-binding domain (RBD) homodimer was developed as a SARS-CoV-2 vaccine candidate. Formulated with aluminum adjuvant, RBD dimer elicited strong immune response in both rodents and non-human primates, and protected mice from SARS-CoV-2 challenge with significantly reducing viral load and alleviating pathological injury in the lung. In the non-human primates, the vaccine could prevent majority of the animals from SARS-CoV-2 infection in the respiratory tract and reduce lung damage. In addition, antibodies elicited by this vaccine candidate showed cross-neutralization activities to SARS-CoV-2 variants. Furthermore, with our expression system, we provided a high-yield RBD homodimer vaccine without additional biosafety or special transport device supports. Thus, it may serve as a safe, effective, and low-cost SARS-CoV-2 vaccine candidate.

8.
MAbs ; 13(1): 1930636, 2021.
Article in English | MEDLINE | ID: covidwho-1258715

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes coronavirus disease-2019 (COVID-19), interacts with the host cell receptor angiotensin-converting enzyme 2 (hACE2) via its spike 1 protein during infection. After the virus sequence was published, we identified two potent antibodies against the SARS-CoV-2 receptor binding domain (RBD) from antibody libraries using a phage-to-yeast (PtY) display platform in only 10 days. Our lead antibody JMB2002, now in a Phase 1 clinical trial (ChiCTR2100042150), showed broad-spectrum in vitro blocking activity against hACE2 binding to the RBD of multiple SARS-CoV-2 variants, including B.1.351 that was reportedly much more resistant to neutralization by convalescent plasma, vaccine sera and some clinical-stage neutralizing antibodies. Furthermore, JMB2002 has demonstrated complete prophylactic and potent therapeutic efficacy in a rhesus macaque disease model. Prophylactic and therapeutic countermeasure intervention of SARS-CoV-2 using JMB2002 would likely slow down the transmission of currently emerged SARS-CoV-2 variants and result in more efficient control of the COVID-19 pandemic.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antibodies, Neutralizing/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/prevention & control , SARS-CoV-2/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , Antibody Specificity , Binding Sites, Antibody , CHO Cells , COVID-19/immunology , COVID-19/metabolism , COVID-19/virology , Chlorocebus aethiops , Cricetulus , Disease Models, Animal , Epitopes , Macaca mulatta , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Vero Cells
9.
Cell Res ; 31(2): 126-140, 2021 02.
Article in English | MEDLINE | ID: covidwho-1015005

ABSTRACT

The current coronavirus disease 2019 (COVID-19) pandemic presents a global public health challenge. The viral pathogen responsible, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), binds to the host receptor ACE2 through its spike (S) glycoprotein, which mediates membrane fusion and viral entry. Although the role of ACE2 as a receptor for SARS-CoV-2 is clear, studies have shown that ACE2 expression is extremely low in various human tissues, especially in the respiratory tract. Thus, other host receptors and/or co-receptors that promote the entry of SARS-CoV-2 into cells of the respiratory system may exist. In this study, we found that the tyrosine-protein kinase receptor UFO (AXL) specifically interacts with the N-terminal domain of SARS-CoV-2 S. Using both a SARS-CoV-2 virus pseudotype and authentic SARS-CoV-2, we found that overexpression of AXL in HEK293T cells promotes SARS-CoV-2 entry as efficiently as overexpression of ACE2, while knocking out AXL significantly reduces SARS-CoV-2 infection in H1299 pulmonary cells and in human primary lung epithelial cells. Soluble human recombinant AXL blocks SARS-CoV-2 infection in cells expressing high levels of AXL. The AXL expression level is well correlated with SARS-CoV-2 S level in bronchoalveolar lavage fluid cells from COVID-19 patients. Taken together, our findings suggest that AXL is a novel candidate receptor for SARS-CoV-2 which may play an important role in promoting viral infection of the human respiratory system and indicate that it is a potential target for future clinical intervention strategies.


Subject(s)
COVID-19/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Respiratory Mucosa/cytology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Bronchi/cytology , Bronchi/metabolism , Cell Line , Humans , Lung/cytology , Lung/metabolism , Models, Molecular , Protein Interaction Domains and Motifs , Proto-Oncogene Proteins/analysis , Receptor Protein-Tyrosine Kinases/analysis , Respiratory Mucosa/metabolism , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/analysis , Virus Internalization , Axl Receptor Tyrosine Kinase
10.
Transportation Research Part E: Logistics and Transportation Review ; 144:102128, 2020.
Article in English | ScienceDirect | ID: covidwho-894250

ABSTRACT

The phenomena of the COVID-19 outbreak and the Arctic Iceberg melting over the past two years make us reconsider the impact our way of life has on the environment and the responsibility of business toward minimizing and potentially eliminating emissions. Increasing ship traffic in ports leads to the growing emission of air pollutants, which influences the air quality and public health in the surrounding areas. The International Maritime Organization (IMO) has adopted relevant regulations (e.g., Annex VI of IMO's pollution prevention treaty (MARPOL) and mandatory energy-efficiency measures) to address ship emissions. To ensure the effective implementation of such regulations and measures, air emission detection and monitoring has become crucial. In this paper, a dynamic multitarget path planning model is developed to realize multi-UAVs (Unmanned Aerial Vehicles) performing synergistic detection of ship emissions in ports. A path planning algorithm under a dynamic environment is developed to establish the model. This algorithm incorporates a Tabu table into particle swarm optimization (PSO) to improve its optimization ability, and it obtains the initial detection route of each UAV based on a “minimum ring” method. This paper describes a multi-UAVs synergistic algorithm to formulate the path reprogramming time in a dynamic environment by judging and cutting the “minimum ring”. This finding proves the improved efficiency of air pollution detection by UAVs. It provides useful insights for maritime and port authorities to detect ship emissions in practice and to ensure ship emission reduction for better air quality in the postpandemic era.

SELECTION OF CITATIONS
SEARCH DETAIL